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Abstract 

The use of exponential functions as an approximation 
for reflection powers leads the intensity problem of 
n-beam kinematical diffraction to an eigenvalue prob- 
lem. It is solved in the way similar to an n-beam 
Borrmann dynamical diffraction problem. Besides the 
intensities of Bragg-reflected beams, the excitation of 
modes concerning the intensity attenuation is also 
calculated for highly absorbing infinitely thick crystals. 
Experiments of multiple reflection from GaAs, InAs 
and InP single crystals for Cu K~t radiation were carried 
out. Comparison between the experimental and cal- 
culated reflected intensities for several 2-, 3-, 4-, 5- and 
8-beam cases are given and discussed. 

Introduction 

Based on the secondary extinction theory of X-ray and 
neutron diffraction, Moon & Shull (1964) derived a 
formalism for neutron diffraction intensities of multiple 
reflection in single crystals. A similar treatment was 
given by Zachariasen (1965) for X-ray cases. Since 
then, only a few theoretical works concerning the 
intensity aspect of multiple reflection from single 
crystals, in terms of kinematical theory, have been 
reported. These include the articles of Caticha-Ellis 
(1969), Prager (1971) and Parente & Caticha-Ellis 
(1974). Recently, Chang (1981) has extended the same 
treatment for multilayer systems in which several thin 
single-crystal layers are involved. Since the kinematical 
approach involves n differential equations, governing 
the exchange of power among the n diffracted beams, it 
is a formidable task to find the exact solution for the 
differential equations when n > 3. The approximation 
of using a Tayor's-series expansion, up to second order, 
as a solution has been proposed by Moon & Shull 
(1964). This approximation is only valid for reflections 
having low secondary extinction, i.e. with Ql ,~ 1 and 
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~tl ,~ 1, where Q,/a, and l are the reflectivity, the linear 
absorption coefficient and the path lengths of the 
diffracted beam within the crystal, respectively. How- 
ever, these two conditions of validity are usually not 
satisfied simultaneously for highly absorbing crystals in 
X-ray cases. For these cases, iterative calculation for 
higher-order terms of the series expansion (Parente & 
Caticha-Ellis, 1974) together with correct polarization 
factors (Unangst & Melle, 1975) need to be con- 
sidered. As pointed out by Chang (1981), it is difficult 
to find the correct polarization factors to insert in this 
iterative procedure, as far as the numerical calculation 
is concerned. To eliminate this difficulty, it seems 
helpful to reconsider the calculation procedure, based 
on the dynamical theory for n-beam Borrmann 
diffraction, in which polarization factors are associated 
with the corresponding electric susceptibilities and the 
susceptibilities are involved only once in the funda- 
mental equation of the wavefield (Laue, 1949). In this 
paper, we assume that the approximate solutions of the 
differential equations are exponential functions. The 
kinematical problem is then treated in a way similar to 
the dynamical problem so that the polarization factors 
only enter in the beginning of the calculation. The series 
expansion for reflection power and the iterative 
procedure can therefore be omitted. For simplicity, 
only the cases involving infinitely thick crystals are 
considered. Measurement of the diffracted intensity of 
multiple reflection of Cu Ka radiation from GaAs, 
InAs and InP plate-like crystals was carried out so as 
to compare with the theory. 

Theoretical consideration 

Multiple diffraction occurs when a crystal is so oriented 
that n sets of atomic planes are simultaneously in 
position to diffract an incident beam. Interaction 
among the n diffracted beams, within the crystal, 
modifies the reflection power of simple Bragg (2-beam) 
diffraction for each individual beam involved. Follow- 
ing Moon & ShuU (1964), the interaction can be 
described by the following differential equation, involv- 
ing the change of power in beam i, as it traverses a 
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crystal layer of thickness dx at depth x below the upper 
crystal surface: 

dPi Pi n ( Qjt Pj Qii Pi ) 
+ - - -  U + j ~  (1) 
- dx Yi .= ~j ~i  

for each i beam, where the summation is taken over all 
n diffracted beams. The plus and minus signs are for 
transmission (Laue) and reflection (Bragg) cases, 
respectively. Pt is the power in beam i and Yi is the 
magnitude of the direction cosine of beam i relative to 
the crystal normal. Q~j is the effective reflectivity, 
defined as 

( 23 N2.F.2 ) 
= • p t l ( i -  j) W(AOifl, (2) 

Qij sin 20 tj 

where W(AOij), the mosaic distribution function, is 
usually assumed to be a Gaussian. AO~j is the deviation 
from the Bragg angle of (i - j )  reflection, Oij. 2, N and 
F are the wavelength of the X-rays used, the number of 
unit cells per unit volume, and the structure factor, 
respectively. Pi j ( i -  j) is the polarization factor given 
by Zachariasen (1965), defined as 

P i j ( i -  j )  = ½[COS 2 20  i + COS 220 i + (cos 201_i 

-- COS 20  i COS 20j)Zl. (3) 

We assume that 

Pi(x) = Pi e-'~x (4) 

for a l l / i s  an approximate solution for (1), where a is a 
linear attenuation coefficient. By substituting (4) into 
(1), the differential equations form a set of linear 
equations: 

( - S i a i i - a ) P i - S  i ~ aijPj=O (5) 
j ~ i  

ratios of wavefield amplitudes among the diffracted 
waves, and the eigenvalues, which determine the 
resonance failure [Anpassung (Ewald, 1917)], define 
the mode of wave propagation. Correspondingly, in the 
present kinematical treatment, it would be convenient 
to define the state of attenuation associated with a given 
eigenvalue a as a mode of attenuation. For each k 
mode, there exists a ratio, i.e. 

Pt,(k):Pt2(k):.. "PG(k):Pm,(k):...'Pm,R(k) 

= Ct,(k):C6(k)'...:PG(k)'Cm,(k):.. "Cm,,,(k) , (8) 

and a corresponding Ctk, supposing that there are n r 
transmissions and n R reflections. They are labelled with 
subscripts l and m, respectively, l~ indicates the direct 
beam. From (8), the proportionality constant X k, 
defined as 

Pt(k)  Pm(k) 
X k . . . . .  . . . ,  (9) 

Ct(k) Cm(k) 

can be determined from the boundary conditions at the 
upper crystal surface (x = 0). That is, the total reflected 
power inside the crystal should be equal to that outside 
the crystal for each diffracted beam. In other words, 

~" Pt,(k) = Pt , (x  = 0 )  = 1 for the incident beam, 
k 

~. Pt(k) = 0 f o r  l = l 2,  l 3 . . . . .  l , , ,  
k 

(10) 

and 

Pro(k) : Pro(O) for m = m~ . . . . .  m,, k. 
k 

for all i, where 

and 

aii=-(u + ~ (6) 

ais= Qji/Yj (7) 

{+11 for transmission 

Si = for reflection. 

Equation (5) can be solved as an eigenvalue problem. 
There are n eigenvalues and eigenvectors. The former 
describe the attenuation and the latter give the ratio of 
reflection powers among the n diffracted beams. It is 
known, in dynamical theory, that the fundamental 
equations of the wavefield can be written as an 
eigenvalue equation. The eigenvectors provide the 

The summation is taken over all the permitted modes of 
attenuation. Pro(O) is the power of the Bragg reflected 
beam, m, at x -- 0. As mentioned by Chang (1979), the 
number of permitted modes, np, of X-ray dynamical 
diffraction for infinitely thick crystals is equal to 
2(n - nk). Similarly, by considering the fact that laijl ,~ 
laul and p >> Q~j in high absorption cases of X-rays, it 
would be very easy to show that the number of 
permitted modes in a kinematical n-beam diffraction is 
equal to n - n  R. The corresponding a for these 
permitted modes are positive. The rest of the modes, 
with negative a, are considered as the attenuation for a 
back-reflected beam from the lower crystal surface. 
Since we are dealing with an infinitely thick crystal, the 
modes associated with the back reflection from the 
lower surface should not be included in the calculation. 
By considering this point, (9) and (10) can be combined 
into the following matrix form: 
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( 

Ch(1 ) Ct,(2)...Ch(n ~) 0 

Ct.(1 ) Ct.,(2)...Ct.,(n~) 0 

Cm,(1 ) Cml(2)...Cm,(nu) -1  

Cm,(1 ) Cm.R(2)...Cm.,(np) 0 

n~ terms 
& 

0 0 ° ' •  ~ I  

• • o  0 

0 . . . 0  

- 1  

- 1  

0 . . . - 1 ]  

Ix, 1 X2 

Pm,(O) 

Pm2(O) 

~Pmni(O) /o/ 

• (11 )  

The diffracted p o w e r s  Pml(O), Pm2(O), . . . ,  Pm. (O) of 
the reflections m~, mE, ..., m,, from the upper crystal 
surface are then obtained. The excitations of modes, 
defined as 

Ex ( k ) -  - -  
lip 

~. IXkl 
k = l  

are also determined• 

E x p e r i m e n t a l  

To verify the theoretical treatment given above, a 
multiple reflection experiment, similar to the one 
described by Renninger (1937), was carried out. The 
experimental set-up previously reported (Chang, 1981) 
was used. The angular divergence of the incident beam 
from a Cu target was about 20' of arc. The specimens 
were GaAs, InAs and InP single-crystal slabs 10 x 10 
mm square with a thickness of 500 pm. The large face 
was cut normal to [001 ]. 

The crystals were first set at the Bragg angles for 006 
reflection and then rotated about the [006] reflection 
vector. When the so-called secondary reflections also 
satisfied Bragg's law, the interaction among reflections 
within the crystal modified the diffracted intensity of 
the primary 006 reflection• The modification on the 006 
reflected intensity was recorded with a detector• 
Indexed 006 multiple diffraction patterns obtained for 
GaAs, InAs and InP of Cu Kal and Cu K a  2 a r e  shown 
in Figs. 1, 2, 3 and 4. There, only the indices of 
secondary reflections are given. The peak intensities of 
multiple diffraction were measured with a slit of 0.3 o at 
the azimuthal positions with maximum intensities. The 
total counts for each peak were accumulated up to 
more than 10 4 SO that the error in counting statistics is 
less than 1%. 
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Fig. I. 006 multiple diffraction pattern for Cu Ka~ from GaAs. 45 
kV, 30 mA.  Full scale = 4 k counts  s - l .  
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Fig. 2. 006 multiple dif f ract ion pa t tern  for  Cu Ka2 f rom G a A s .  45 
kV, 30 mA. Full scale = 2 k counts s-l. 
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Fig. 3. 006 multiple diffraction patterns for Cu Ka~ (a) and Cu K~ 
(b) from InAs. 40 kV, 14 mA. (a) Full scale = 4 k counts s -l. (b) 
Full scale = 2 k counts s-L 
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Calculations 

Based on the above theoretical consideration, a 
computer program was written for calculating the 
diffracted intensities of a general n-beam diffraction, 
with n > 2. Since only the relative peak intensities were 
measured, the mosaic distribution W was set equal to 
unity so as to facilitate the calculation. Input data 
include the wavelength, 2, of the radiation used, lattice 
constant a, linear absorption coefficient p, Miller 
indices of the n reflections, and structure factors. The 
structure factors were calculated based on the atomic 
factors from International Tables for X-ray Crystallog- 
raphy (1974), with temperature and anomalous scatter- 
ing corrections (Table 1). The Debye parameters are 
0.6 ,lt 2 for both Ga and As (International Tables for 
X-ray Crystallography, 1968) and 0.624 and 0.591/~2 
for In and P at room temperature (Post, 1974). The 
values of ~t and 1/p for GaAs, InAs and InP are listed 
in Table 2. 

Because of the geometric relation between the 
reciprocal-lattice points and the Ewald sphere, secon- 
dary reflections with their reciprocal-lattice points lying 
on the equatorial circle are surface reflections. (The 
equatorial plane represents the crystal surface.) In the 
present case, the primary reflection is 006; therefore, 
secondary reflections hkl with l = 3  are surface 
reflections. They are always associated with those 
n-beam cases where n is an odd integer. Since the 
direction cosine of a surface reflection is zero, (1) has a 
singularity at 7 =  0. To overcome this difficulty, an 
approximate solution for the diffracted intensity can be 
obtained in the following way (Chang, 1981). Surface 
reflection can be treated as either a Bragg (reflection) 
with 7 < 0 or a Laue (transmission) with y > 0. The 
approximate value for diffracted intensity can be 
obtained by interpolating the calculated intensity curve 
versus 7 as 7 approaches zero. For convenience, the 
calculations for even- and odd-order multiple diffrac- 
tions are discussed separately below. 

( a )  - IO0 

B-BEAM 5- BEAM 5-BEAM 
5-BEAM 8-BEAM -80  

(i) Even-order multiple diffractions 

The cases 000 006 and 000 006 131 135 from GaAs 
and 000 006:202 200 402 204 206 404 from InP for 
Cu Ka~ were chosen to illustrate the calculations for 2-, 
4- and 8-beam diffractions, where 006 is a symmetric 
Bragg reflection. In Table 3, the attenuation coefficients 
a, the number of permitted modes n~,, the excitation of 
modes Ex, and the intensities of Bragg reflected beams 
IBragg a re  listed. The positive a's are approximately 
equal to ,u/y t, where Yt is the direction cosine of the 
corresponding transmitted beam t. The negative a's, 
approximately equal to p/y,,,, are associated with the 
reflected beams. The a's are then listed together with 
their corresponding reflections in Table 3. It is clear 
that the small difference between a and p/y is due to the 

~n 

term ) ' J~ ;Qu in (6). The mode associated with the 
direct beam, 000, is always the most excited mode. For 
GaAs, the attenuation a of this mode increases from 

Table 1. The structure factors for the reflections 
involved 

The + and - signs indicate h + k + l a r e  4n + 1, and 4 n -  1, 
respectively. 

IFI  

hkl GaAs InAs InP 
I I1(+)  147.971 209.778 179.572 
111(-) 146.975 194.960 172.117 
113(+) 114.179 168.289 137.216 
113(-) 113.311 154.106 127.600 
115(+) I 80.865 126.299 105.159 
333( - ) j  80.251 113.012 98.806 
133(+) 95.032 143.882 120.182 
133(-) 94.296 130.088 113.780 
135(+) 69.863 112.677 93.863 
135(-) 69-339 100.019 87.649 
335(+) 60.863 101.767 85.026 
335(-)  60.406 89.827 79.051 
155(+) 53.559 92.728 77.753 
155(-) 53.156 81.530 72.076 
355(+) 47.529 85.123 71.628 
355(-)  47.158 74.662 66.279 
002 6.863 60.741 118.863 
006 / 
244J 6.538 34.679 63.256 

024 6.538 42.491 81.839 
022 I74.219 239.243 182.361 
004 142.769 200.174 151.332 
044 103.526 153.000 116.049 
026 89.927 136.989 104.385 

(b) , o o -  

O* 45* BO- 

Table 2. The lattice constants a, the absorption co- 
efficients lu, and 1/lufor GaAs, InAs and InP 

Fig. 4. 006 multiple diffraction patterns for Cu Ka~ (a) and Cu Ka2 GaAs 
(b) from InP. 42 kV, 22 mA. (a) Full scale = 10 k counts s -t. (b) lnAs 
Full scale = 4 k counts s-L InP 

p (mm-')  1//10tm) 

a (A) Cu Ka I Cu Ka2 Cu Kal Cu Ka2 
5.6539 40.283 40.543 24.82 24.67 
6.0580 101.763 102.375 9.83 9.77 
5.8696 98.979 99.568 10.10 10.04 
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Table 3. Kinematical calculations for  2-, 4- and 8- 
beam cases 

n Laue Bragg a(mm -I) n v Ex ( % )  /Bragg 
GaAs 2 000 49.276 1 100.00 

006 -49.276 0.27888 × 10 -6 

GaAs 4 000 49.290 99.95 
131 73.942 2 0.05 

006 -49.281 0.28211 × 10 -6 

135 -73.933 0.24240 x 10 -4 

InP 8 000 
~02 
200 
402 

125.797 57.39 
377.297 4 0.01 
125.751 42.60 
377.236 0.2 x 10 -2 

006 --1-25.729 0.78176 × 10 -6 
204 -377.225 0-69310 x 10 -2 
206 -125.750 0.24106 x 10 -4 
404 -377-223 0.12261 x 10 -4 

49 .2755 to 49 .2902  mm -1 as n changes from 2 to 4. 
The corresponding excitation decreases from 100 to 
99 .05%.  The excitation of the mode with a = 73.942 
mm -1 is only about  0 .05%.  The 006 reflected intensity 
also changes  from 0 .2789  × 10 -6 to 0-2821 x 10 -6. 

In the 4-beam case, the ratio Ioo6/I1~ 5, equal to 1.16 
x 10 -2, is approximate ly  equal to IF0o612/IF~5512, whose 
value is 0 .88 x 10 -2. This means  that  the interact ion 
among the 4 diffracted beams has  modified the reflected 
intensities away from their 2-beam characterist ics ,  i.e. 
I oc IFI 2. For  the 8-beam case from InP,  two modes are 
most  effectively excited. The excitat ions for these two 
modes are 5 7 . 3 9 %  for a = 125.797 mm -x and 4 2 . 6 0 %  
for a = 125.751 m m - L  It seems that  those modes  with 
a very close to ~/?'0o0 play a more impor tan t  role in the 
a t tenuat ion than those with a very different from/~/Y000. 
In other words,  the interaction between 000 and 200 
reflections dominates  the diffraction process. Also, 
because of this interaction, the reflected intensities are 
no longer proport ional  to IFI 2. For  example,  1006 > I~04 
and I206 > I404, a l though lEo061 < IF~041 and IF2061 < 
IF4041. 

3 i 3 reflection decreases as y increases.  This  agrees with 
the physical  situation that  the closer to the crystal  
surface normal  the 3 i3  diffracted beam is, the greater 
the excitation of  the mode associated with it. For  
3-beam Bragg -Bragg  type, there is only one mode 
being excited. The magni tude of  c~ and the 006 reflected 
intensity have the same values as those for the 
B r a g g - L a u e  case. The 313 reflected intensity decreases 
as y decreases,  since the t ransfer  of  power from the 
incident beam to the surface reflected beam for smaller 
7 is more difficult than  for larger 7. Similar results are 
also obtained for the 5-beam case. 

Results and discussions 

Because the incident beam possessed an angular  
divergence about  0.3 o, overlapping of several multiple 
diffraction peaks cannot  be avoided. Those  overlapped 
peaks,  shown in Figs. 1, 2, 3 and 4, were indexed with 

Table 4. Kinematical calculations fo r  3- and 5-beam 
cases f o r  G a A s  

Type Ysurf n Laue Bragg a(mm -1) np Ex(%) 
BL 0.6 3 000 49.2810 2 99.97 

3i3 67.148 08.03 
006 -49-277 

BL 0.4 3 000 49.281 2 99.99 
3i3 100.721 0.01 

006 --49-277 

/Bragg 

0.27967 × 10 -6 

BB 0.6 3 000 49.281 1 100.00 
006 -49.277 
3i3 -67-148 

0.27980 × 10 -6 

BB 0.4 3 000 49.281 1 100.00 
006 -49.279 
3i3 -100.721 

0.27967 x 10 -6 

0-47970 x 10 4 

BL 

0.27980 x 10 -6 
0.37233 x 10 -4 

(ii) Odd-order multiple diffractions BL 

000 006 3 i3 and 000 006 111 115 333 for Cu  Kal 
from G a A s  are discussed here. 3 i3 and i 3 3  are surface 
reflections. As ment ioned above, a surface reflection 
can be treated as either a Bragg reflection, B r a g g -  
Bragg type, or a Laue t ransmission,  B r a g g - L a u e  type, BB 
with 171--,0. In Table 4, the calculated reflected 
intensities, a and Ex are listed for the direction cosines 
Ysurr of  the surface reflection equal to 0 .4  and 0.6 for 
illustration. For  the 3-beam B r a g g - L a u e - t y p e  diffrac- 
tion in GaAs ,  there are two permit ted modes,  i.e. a - BB 
49.281 and 67.148 mm -l .  The excitat ion of the mode 
(49.281 mm - t )  associated with 000 reflection increases 
while that  of  the mode (67.148 mm -1) associated with 

0.6 5 000 49.329 3 97.79 
l i l  74.005 0.19 
333 67.144 0.02 

006 -49-302 
l i5 -73-971 

0.30930 × 10 -6 
0.28885 × 10 -4 

0.4 5 000 49.329 3 99.80 
lJ l  74.005 0.19 
313 100.716 0.01 

006 -49.302 
li5 -73.971 

0.30933 x 10 -6 
0.28885 x 10 -4 

0.6 5 000 49.329 2 99.81 
l i l  74.005 0-19 

006 -49-302 
li5 -73.971 
333 -67.144 

0.30930 × 10 -6 
0-28885 × 10 -4 

0.30070 × 10 -4 

0.4 5 000 49.329 2 99.81 
l i l  74.005 0.19 

006 -49.302 
li5 -73.971 
333 -100.716 

0.30933 × 10 -6 

0.28885 × 10 -4 

0.23342 × 10 -4 
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two or more sets of Miller indices. Those peaks labelled 
as 5-, 6- and 8-beam are 000 006 1 f 1 115 333,000 006 
222 224 222 224, and 000 006 202 200 402 204 206 
404 reflections. Only the peak intensities of well- 
resolved multiple diffraction peaks were measured and 
subjected to the calculation. 

By comparing the diffraction patterns of GaAs, InAs 
and InP, it is interesting to note that, because of the 

_ _  

difference in lattice constant, the 113 reflection does not 
exist for GaAs and InP while it has a notable intensity 
for InAs. Also, the GaAs diffraction patterns show 
more peaks than those for InAs. The InP patterns have 
only two diffraction peaks above the 006 reflection 
background. This is because the 006 background for 
GaAs is lower than for InAs and much lower than for 
InP, since F006(GaAs ) < F006(InAs ) < F006(InP ) (Table 
1). Clearly, some diffraction peaks, especially for InP, 
were smeared out by the high background. 

In Tables 5, 6 and 7, the measured and calculated 
peak intensities for those well resolved multiple diffrac- 
tion peaks are given for GaAs, InAs and InP for Cu 
Kal and Cu K a  2 radiation. A/and  teff a r e  the difference 
in intensity between the multiple diffraction peak and 
the 006 background, and the effective thickness by 
which the sample diffracts the incident beam. The latter 
were obtained with the program for calculating the 
intensity of multiple diffractions involving multilayers 
(Chang, 1981). The tefr's have a value of about 3//~. 

(See Table 2 for 1//~.) They increase when the multiple 
diffraction involves more transmission reflections and 
less Bragg and surface reflections, since transmission 
reflections tend to decrease absorption through 
Borrmann effects and Bragg reflections tend to shorten 
the length of beam penetration. The stronger the 
transmission is, the lower the absorption. And the 
weaker the Bragg reflection is, the longer the pene- 
tration path. In view of the values of the tefr'S in Tables 
5, 6 and 7 and the structure factors in Table 1, the 
above explanation seems reasonable. 

As the diffracted intensity is concerned, 1/1" showed 
a good qualitative and fair quantitative agreement 
between the experimental and calculated results for the 
cases involving weak reflections. However, the cal- 
culated AI/1 is about one or two orders of magnitude 
smaller than the observed values. This is because d i l l  
is very sensitive to small variations in diffracted 
intensity when I is very close to I n = 2. (Better agreement 
can be obtained if one normalizes AI/I in the same way 
as I/I*.) The lack of quantitative agreement can 
directly be understood from (1) and (5). For high- 
absorption cases, /1 is much greater than Qij. For 
instance, the/~'s are about three orders of magnitude 
larger than Qij for GaAs, InAs and InP crystals with 
respect to Cu Ka radiation. Taking this into account, 
the equations imply that (i)a must be almost equal to 
/1/7 and (ii) the participation of secondary reflections 

Table 5. The effective thicknesses and the calculated and observed 006 reflected intensities of  multiple diffractions 
for Cu Kal and Cu Kct 2 from GaAs 

t indicates that the intensity of this reflection is used as unity for normalization. 

1006 I/I* AI/In= 2 

n Reflection Obs.(counts/60 s) Calc.(10 -b) Obs. Calc. Obs. Calc. te,(gm ) 
Cu Ka~ 

2 27545 0.27888 0.928 0.999 0 0 67.95 
3 313 32432 0.27980 1-093 1.002 0.177 0.003 61.28 
3 i53t 29677 0.27914 1.00 1.00 0.077 0.001 65-70 
4 151 38795 0.28284 1.307 1.013 0-408 0.014 67.54 

155 
4 151 33996 0.28211 1.146 1.011 0.234 0.012 67.09 

1~5 
4 131 33424 1.28221 1.126 1.011 0.213 0.012 67.05 

135 
5 111 69366 0.30934 2.337 1.108 1.518 0.109 60.11 

1i5 
533 

Cu Ka2 
2 15720 0.15171 0.864 0.994 0 0 67.81 
3 i53 16633 0.15186 0.914 0.995 0.058 0.001 65.41 
4 311 19173 0.15347 1.054 1.005 0.220 0.012 67.02 

3f5 
4 131 19157 0.15353 1.053 1.006 0.219 0.012 66.97 

135 
4 33 It 18189 0-15267 1.00 1.00 0.157 0.006 67.97 

335 
4 331 18380 0.15270 1.011 1.000 0.169 0.007 67.95 

395 
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The effective thicknesses and the calculated and observed 006  reflected intensities of multiple diffraction 
for C u  Kal and Cu Ka2 from I n A s  

t indicates that the intensity of this reflection is used as unity for normalization. 
1006 I/I* AI/In: 2 

t indicates that the intensity of this reflection is used as unity for normalization. 

loo 6 I/I* Al/In = 2 

Obs. (counts/100 s) Calc. (10 -5) Obs. Calc. Obs. Calc. 

945692 0- 78157 0.968 0.999 0 0 
977426 0.78184 1.00 1.00 0.034 0.0004 

967906 0.78176 0.990 1.000 0.024 0.0003 23.78 

tel r (~tm) 

31.99 
38.51 

474647 0.42448 0.983 0.999 0 0 
488303 0.42463 1.00 1.00 0.029 0.0004 

484207 0.42458 O. 992 1.000 0.020 0.0002 23.76 

31.98 
39.01 

Reflection 
Cu Ka~ 

1~5 
~33 

~02 
200 
402 
~04 
206 
404 

Cu Kaz 

111, 
i t5  
~33 
~.o2 
200 
402 
~o4 
206 
404 

The effective thicknesses and the calculated and observed 006  reflected intensities of multiple diffraction 
for C u  Kal and C u  Ka2 from I n P  

Reflection Obs. (counts/60 s) Calc. (10 -5) Obs. Calc. Obs. Calc. tel f (/am) 
Cu Ka, 

38582 0.19652 0.956 0.999 0 0 26.79 
351 40562 0.19663 0.995 I. 001 0.051 0.0005 27.53 
355 
3 i'_lt 40366 0.19659 1.00 1.00 0.046 0.0003 27.52 
315 
111 51802 0.19733 1.265 1.004 0-324 0.0041 26.86 
1i5 
533 
202 41476 0-19661 1-027 1.000 0-075 0.0004 20.90 
200 
402 
~04 
206 
404 

C u Ka2 
19812 0-10657 0.954 0.999 0 0 26.78 

113 38470 0.10676 1.853 1-002 0.942 0.0018 24.93 
3 i ' l t  20759 0.10660 1.00 1-00 0.048 0.0003 27.55 
3i'5 
351 20921 0.10663 1.008 1.000 0.056 0.0006 27.55 
355 
202 20816 0.10661 1.003 1.000 0.051 0.0004 20.91 
200 
402 
~04 
206 
404 
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will only give a third-order modification on the 
diffraction power of the primary reflection for these 
particular cases. These points have clearly been 
demonstrated in Tables 3 and 4. As diffraction in real 
crystals is concerned, the dynamical effects always 
accompany the diffraction process. The dynamical 
interaction among diffracted beams usually gives the 
2-beam reflected intensity a zeroth-order modification 
for strong reflections and a first- or second-order 
modification for medium or weak reflections. It is 
therefore not surprising that the calculated AI/I are 
much smaller than the observed ones. The big 
difference between the observed and calculated I/I* of 

- _  

113 from InAs for_C_ u Ka2 is possibly due to the large 
Lorentz factor for 113, which was not considered in the 
calculation. 

For low-absorption thin crystals, back reflections 
from the lower crystal surface are as important as the 
forward diffraction from the upper surface. Those 
modes with negative a therefore need to be included in 
the calculation. There are n permitted modes for 
n-beam diffractions. If the reflectivities, Qij, are of the 
same order of magnitude as that of the linear 
absorption coefficient /2, the reflected intensity of the 
primary beam is expected to be modified a great deal 
and all modes involved will be considerably excited. 
The extinction would then play a more important role 
in diffraction for this case than for high-absorption 
cases. 

Conclusion 

From the above treatment, we conclude that the use of 
exponential functions for the calculation of the reflec- 
tion powers leads us to treat the intensity problem of 
n-beam kinematical diffraction as an eigenvalue prob- 
lem. The excitation of modes and reflected intensities 
can be calculated in a way similar to an n-beam 
Borrmann diffraction problem. It is therefore possible 

to know how the attenuation varies among the n 
diffracted beams, especially for cases involving many 
strong reflections. This would be impossible for the 
method that uses a series expansion as an approximate 
solution for the reflection powers. 

It is also clear that the difference between our 
treatment and the dynamical one lies in the fact that, as 
usual, the former considers the reflection power, or 
intensity, and the latter the wavefield. Hence, in our 
treatment, the modes are associated with the at- 
tenuation of the intensities and in the dynamical cases 
they are associated with wave propagation. 

Moreover, in our treatment, the effect of crystal 
thickness on the diffracted intensities has been con- 
sidered. Direct comparison of reflected intensities can 
be made for various crystals as long as the experi- 
mental conditions remain the same. 
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